An analogue of the variational principle for group and pseudogroup actions
DOI10.5802/aif.2778zbMath1294.37011OpenAlexW2322727678MaRDI QIDQ381139
Publication date: 15 November 2013
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2013__63_3_839_0/
variational principleHausdorff measuretopological entropyfoliationspseudogroupshomogeneous measureCarathéodory measures and dimensionsCarathéodory structureslocal measure entropy
Entropy and other invariants (28D20) Dynamics induced by group actions other than (mathbb{Z}) and (mathbb{R}), and (mathbb{C}) (37C85) Topological entropy (37B40)
Related Items (22)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A Billingsley type theorem for Bowen entropy
- Equicontinuous foliated spaces
- Geometric entropy of foliations
- Lectures on analysis on metric spaces
- Entropies of a semigroup of maps
- Topological entropy of free semigroup actions and skew-product transformations
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- ON MEASURES WITH THE DOUBLING CONDITION
- Every complete doubling metric space carries a doubling measure
- Skew product maps related to finitely generated rational semigroups
- Dimension type characteristics for invariant sets of dynamical systems
- Topological Entropy for Noncompact Sets
- Entropy for Group Endomorphisms and Homogeneous Spaces
- Metric structures for Riemannian and non-Riemannian spaces. Transl. from the French by Sean Michael Bates. With appendices by M. Katz, P. Pansu, and S. Semmes. Edited by J. LaFontaine and P. Pansu
This page was built for publication: An analogue of the variational principle for group and pseudogroup actions