Multiplicativity of the gamma factors of Rankin-Selberg integrals for \(\mathrm{SO} _{2l} \times\mathrm{GL}_n\)
From MaRDI portal
Publication:382244
DOI10.1007/s00229-012-0602-xzbMath1318.11158OpenAlexW2032448327MaRDI QIDQ382244
Publication date: 18 November 2013
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00229-012-0602-x
Representations of Lie and linear algebraic groups over local fields (22E50) Representation-theoretic methods; automorphic representations over local and global fields (11F70) Zeta functions and (L)-functions (11S40)
Related Items (9)
On the Langlands parameter of a simple supercuspidal representation: even orthogonal groups ⋮ The generalized doubling method: local theory ⋮ A converse theorem for split \(\mathrm{SO}_{2l}\) over finite fields ⋮ Local descent to quasi-split even general spin groups ⋮ Complementary results on the Rankin-Selberg gamma factors of classical groups ⋮ On local descent for unitary groups ⋮ The Langlands parameter of a simple supercuspidal representation: symplectic groups ⋮ Doubling constructions and tensor product \(L\)-functions: the linear case ⋮ On \(L\)-functions for \(U_{2n+1} \times \text{Res}_{E/F} \text{GL}_m (m > n)\)
Cites Work
- Multiplicity one theorems
- An invariant theory approach for the unramified computation of Rankin-Selberg integrals for quasi-split \(\text{SO}_{2n} \times \text{GL}_n\)
- Explicit constructions of automorphic \(L\)-functions
- The local converse theorem for \(\operatorname {SO}(2n+1)\) and applications
- A corollary to Bernstein's theorem and Whittaker functionals on the metaplectic group
- The unramified computation of Rankin-Selberg integrals for \(\mathrm{SO}_{2l}\times\mathrm{GL}_ n\)
- A proof of Langlands' conjecture on Plancherel measures; complementary series for \(p\)-adic groups
- Functoriality for the classical groups
- A geometric construction of intertwining operators for reductive \(p\)-adic groups
- Rankin-Selberg Convolutions
- Rankin-Selberg convolutions for 𝑆𝑂_{2𝑙+1}×𝐺𝐿_{𝑛}: local theory
- On Certain L-Functions
- REPRESENTATIONS OF THE GROUPGL(n,F) WHEREFIS A NON-ARCHIMEDEAN LOCAL FIELD
- 𝐿 functions for the orthogonal group
- LA FORMULE DE PLANCHEREL POUR LES GROUPES p-ADIQUES. DAPRS HARISH-CHANDRA
- L-Functions for SOn x GLk.
- On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times{\rm GL}_n$
- Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups
- La conjecture locale de Gross-Prasad pour les groupes sp\'eciaux orthogonaux: le cas g\'en\'eral
- Full multiplicativity of gamma factors for \(\operatorname {SO}_{2\ell+1}\times \operatorname {GL}_n\)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Multiplicativity of the gamma factors of Rankin-Selberg integrals for \(\mathrm{SO} _{2l} \times\mathrm{GL}_n\)