Equidistribution of signs for modular eigenforms of half integral weight

From MaRDI portal
Publication:382266

DOI10.1007/S00013-013-0566-4zbMATH Open1333.11042arXiv1210.2319OpenAlexW3102905021MaRDI QIDQ382266

Author name not available (Why is that?)

Publication date: 18 November 2013

Published in: (Search for Journal in Brave)

Abstract: Let f be a cusp form of weight k+1/2 and at most quadratic nebentype character whose Fourier coefficients a(n) are all real. We study an equidistribution conjecture of Bruinier and Kohnen for the signs of a(n). We prove this conjecture for certain subfamilies of coefficients that are accessible via the Shimura lift by using the Sato-Tate equidistribution theorem for integral weight modular forms. Firstly, an unconditional proof is given for the family {a(tp^2)}_p where t is a squarefree number and p runs through the primes. In this case, the result is in terms of natural density. To prove it for the family {a(tn^2)}_n where t is a squarefree number and n runs through all natural numbers, we assume the existence of a suitable error term for the convergence of the Sato-Tate distribution, which is weaker than one conjectured by Akiyama and Tanigawa. In this case, the results are in terms of Dedekind-Dirichlet density.


Full work available at URL: https://arxiv.org/abs/1210.2319



No records found.


No records found.








This page was built for publication: Equidistribution of signs for modular eigenforms of half integral weight

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q382266)