An \(L^p\)-\(L^q\) analog of Miyachi's theorem for nilpotent Lie groups and sharpness problems
From MaRDI portal
Publication:382349
DOI10.1134/S0001434613070018zbMath1408.22009WikidataQ115253928 ScholiaQ115253928MaRDI QIDQ382349
Fatma Abdelmoula, Ali Baklouti, Dhoha Lahyani
Publication date: 18 November 2013
Published in: Mathematical Notes (Search for Journal in Brave)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Analogues of Miyachi, Cowling-Price and Morgan theorems for compact extensions of \(\mathbb R^{n1}\)
- The \(L^{p}-L^{q}\) analog of Morgan's theorem on exponential solvable Lie groups
- Explicit orbital parameters and the Plancherel measure for exponential Lie groups
- Estimate of the \(L^{p}\)-Fourier transform norm on nilpotent Lie groups
- On Hardy's uncertainty principle for connected nilpotent Lie groups
- Sur l'analyse harmonique sur les groupes de Lie résolubles
- A Theorem Concerning Fourier Transforms
- VARIANTS OF MIYACHI’S THEOREM FOR NILPOTENT LIE GROUPS
This page was built for publication: An \(L^p\)-\(L^q\) analog of Miyachi's theorem for nilpotent Lie groups and sharpness problems