Invariant \(\mathrm G^2\mathrm V\) algorithm for computing SAGBI-Gröbner bases
From MaRDI portal
Publication:382761
DOI10.1007/s11425-012-4506-8zbMath1281.13018OpenAlexW2040590588MaRDI QIDQ382761
Benyamin M.-Alizadeh, Amir Hashemi, Monireh Riahi
Publication date: 22 November 2013
Published in: Science China. Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11425-012-4506-8
\(\mathrm G^2\mathrm V\) algorithminvariant \(\mathrm F_5\) algorithminvariant \(\mathrm G^2\mathrm V\) algorithmSAGBI-Gröbner bases
Symbolic computation and algebraic computation (68W30) Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases) (13P10) Actions of groups on commutative rings; invariant theory (13A50)
Related Items
Uses Software
Cites Work
- The F5 algorithm in Buchberger's style
- Extended \(F_5\) criteria
- F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases
- Applying IsRewritten criterion on Buchberger algorithm
- On an installation of Buchberger's algorithm
- A constructive description of SAGBI bases for polynomial invariants of permutation groups
- SAGBI and SAGBI-Gröbner bases over principal ideal domains
- An algorithm to calculate optimal homogeneous systems of parameters
- A new efficient algorithm for computing Gröbner bases \((F_4)\)
- Computational invariant theory
- Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay
- The infiniteness of the SAGBI bases for certain invariant rings.
- Analogs of Gröbner bases in polynomial rings over a ring
- Calculating invariant rings of finite groups over arbitrary fields
- Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases
- A new incremental algorithm for computing Groebner bases
- A new framework for computing Gröbner bases
- A generalized criterion for signature related Gröbner basis algorithms
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item