Periodic structure of transversal maps on \(\mathbb C\mathrm P^n\), \(\mathbb H\mathrm P^n\) and \(\mathbb S^p\times\mathbb S^q\)
DOI10.1007/s12346-013-0099-zzbMath1417.37096OpenAlexW2474450051MaRDI QIDQ384853
Jaume Llibre, Juan Luis García Guirao
Publication date: 29 November 2013
Published in: Qualitative Theory of Dynamical Systems (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12346-013-0099-z
periodic pointcomplex projective spaceLefschetz numberperiodLefschetz zeta functionLefschetz number for periodic pointquaternion projective spacetransversal map
Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics (37C25) Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc. (37C30) Dynamical systems involving smooth mappings and diffeomorphisms (37C05)
Related Items (7)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the Lefschetz periodic point free continuous self-maps on connected compact manifolds
- Fixed point indices of iterated maps
- The Lefschetz numbers of iterated maps
- Period Doubling and the Lefschetz Formula
- The number of periodic points of smooth maps
- Period Three Implies Chaos
- Periodic points of holomorphic maps via Lefschetz numbers
- THE BEHAVIOR OF THE INDEX OF PERIODIC POINTS UNDER ITERATIONS OF A MAPPING
- Periodic orbits of transversal maps
- Periods for Transversal Maps Via Lefschetz Numbers for Periodic Points
This page was built for publication: Periodic structure of transversal maps on \(\mathbb C\mathrm P^n\), \(\mathbb H\mathrm P^n\) and \(\mathbb S^p\times\mathbb S^q\)