Sur les convexes compacts dont l'ensemble des points extrémaux est $\cal K$-analytique
From MaRDI portal
Publication:3855678
DOI10.24033/bsmf.1884zbMath0422.46007OpenAlexW2306429927MaRDI QIDQ3855678
Publication date: 1979
Published in: Bulletin de la Société mathématique de France (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=BSMF_1979__107__49_0
Classes of sets (Borel fields, (sigma)-rings, etc.), measurable sets, Suslin sets, analytic sets (28A05) Convex sets in topological linear spaces; Choquet theory (46A55) Compactness in topological linear spaces; angelic spaces, etc. (46A50)
Related Items (4)
A solution of the abstract Dirichlet problem for Baire-one functions ⋮ Extending Baire-one functions on topological spaces ⋮ Quelques propriétés des espaces \(\alpha\)-favorables et applications aux convexes compacts ⋮ Choquet simplexes whose set of extreme points is K-analytic
Cites Work
- Espaces de Banachs faiblement K-analytiques
- Metrization of compact convex sets
- A criterion for the metrizability of a compact convex set in terms of the set of extreme points
- Characterizations and metrization of proper analytic spaces
- A New Proof that every Polish Space is the Extreme Boundary of a Simplex
- AN EXTREME POINT CRITERION FOR SEPARABILITY OF A DUAL BANACH SPACE, AND A NEW PROOF OF A THEOREM OF CORSON
- On one generalization of weakly compactly generated Banach spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Sur les convexes compacts dont l'ensemble des points extrémaux est $\cal K$-analytique