Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes

From MaRDI portal
Publication:3862068

DOI10.24033/asens.1356zbMath0426.53038OpenAlexW2403216160MaRDI QIDQ3862068

Lionel Bérard Bergery

Publication date: 1978

Published in: Annales scientifiques de l'École normale supérieure (Search for Journal in Brave)

Full work available at URL: http://www.numdam.org/item?id=ASENS_1978_4_11_4_543_0




Related Items (23)

Existence and non-existence of homogeneous Einstein metricsOn Ricci Negative Lie GroupsCompact Einstein-Weyl manifolds with large symmetry groupOn the Chern-Ricci flow and its solitons for Lie groupsHomogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifoldsCanonical Higgs fields from higher-dimensional gravityOn the structure of geodesic orbit Riemannian spacesCurvature flows for almost-hermitian Lie groupsNon-compact Einstein manifolds with symmetryCohomogeneity one manifolds and homogeneous spaces of positive scalar curvatureOn the signature of the Ricci curvature on nilmanifoldsSectional curvature of connections with vectorial torsionGeometry of homogeneous Riemannian manifoldsSome properties of Einstein metrics on solvable Lie groupsSolvable extensions of negative Ricci curvature of filiform Lie groupsReduction by group symmetry of second order variational problems on a semidirect product of Lie groups with positive definite Riemannian metricHomogeneous spaces with inner metric and with integrable invariant distributionsHomogeneous spaces with inner metric and with integrable invariant distributionsScalar curvatures of the first and second kinds of a left-invariant Riemannian metric and universal coveringOptimal Curvature Estimates for Homogeneous Ricci FlowsEinstein extensions of Riemannian manifoldsOn solvable Lie groups of negative Ricci curvatureScalar curvature behavior of homogeneous Ricci flows



Cites Work


This page was built for publication: Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes