On the two-variables main conjecture for extensions of imaginary quadratic fields
From MaRDI portal
Publication:386807
DOI10.2748/tmj/1378991025zbMath1294.11197arXiv1103.1125OpenAlexW1993759354WikidataQ123234659 ScholiaQ123234659MaRDI QIDQ386807
Publication date: 10 December 2013
Published in: Tôhoku Mathematical Journal. Second Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1103.1125
Iwasawa theory (11R23) Class groups and Picard groups of orders (11R65) Elliptic and modular units (11G16)
Related Items
On the two-variables main conjecture for extensions of imaginary quadratic fields, The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields, Invariants and coinvariants of semilocal units modulo elliptic units
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the two-variables main conjecture for extensions of imaginary quadratic fields
- Stark units in \(\mathbb{Z}_p\)-extensions
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- Concernant la relation de distribution satisfaite par la fonction \(\phi\) associée à un réseau complexe. (On the distribution relation satisfied by the function \(\phi\) associated to a complex lattice)
- Class groups of abelian fields, and the main conjecture
- On the main conjecture of Iwasawa theory for imaginary quadratic fields
- The ``main conjectures of Iwasawa theory for imaginary quadratic fields
- On the structure of certain Galois groups
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- On the equivariant Tamagawa number conjecture for Abelian extensions of a quadratic imaginary field
- GLOBAL UNITS MODULO ELLIPTIC UNITS AND IDEAL CLASS GROUPS
- On the equivariant main conjecture for imaginary quadratic fields
- The Gras conjecture in function fields by Euler systems
- Fonctions L p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes.