Optimizing Colin de Verdière matrices of \(K_{4,4}\)
From MaRDI portal
Publication:389679
DOI10.1016/j.laa.2012.09.006zbMath1280.05078OpenAlexW1995796094MaRDI QIDQ389679
Publication date: 21 January 2014
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.laa.2012.09.006
complete bipartite graphrankMoore-Penrose inverseColin de Verdière numberColin de Verdière matrixcorankgeneralized Schur complementoptimizing matrix
Theory of matrix inversion and generalized inverses (15A09) Graphs and linear algebra (matrices, eigenvalues, etc.) (05C50) Canonical forms, reductions, classification (15A21)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On inertia and Schur complement in optimization
- Schur complements and statistics
- Multiplicities of eigenvalues and tree-width of graphs
- Sur un nouvel invariant des graphes et un critère de planarité. (On a new graph invariant and a planarity criterion)
- Steinitz representations of polyhedra and the Colin de Verdière number
- On a minor-monotone graph invariant
- Determination of the inertia of a partitioned Hermitian matrix
- The Moore--Penrose Generalized Inverse for Sums of Matrices
- A variant on the graph parameters of Colin de Verdiere: Implications to the minimum rank of graphs
- A Generalization of the Schur Complement by Means of the Moore–Penrose Inverse
- Generalized Inversion of Modified Matrices
This page was built for publication: Optimizing Colin de Verdière matrices of \(K_{4,4}\)