Systèmes différentiels linéaires $p$-adiques, structure de Frobenius faible
From MaRDI portal
Publication:3909139
DOI10.24033/bsmf.1933zbMath0459.12020OpenAlexW2584302533MaRDI QIDQ3909139
Publication date: 1981
Published in: Bulletin de la Société mathématique de France (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=BSMF_1981__109__83_0
infinite product decompositionp-adic analytic functionsFrobenius operation on linear differential equations
Other analytic theory (analogues of beta and gamma functions, (p)-adic integration, etc.) (11S80) (p)-adic differential equations (12H25) Non-Archimedean valued fields (12J25)
Related Items
Une introduction naïve aux cohomologies de Dwork ⋮ Monodromie unipotente maximale, congruences “à la Lucas” et indépendance algébrique ⋮ Effective \(p\)-adic bounds at regular singular points ⋮ Explicit Frobenius descent for \({\mathcal D}^\dagger\)-modules ⋮ Unnamed Item ⋮ ${\cal D}$-modules arithmétiques. II: Descente par Frobenius
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On p-adic differential equations. II: The p-adic asymptotic behavior of solutions of ordinary linear differential equations with rational function coefficients
- p-adic hypergeometric functions and their cohomology
- Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin
- Equations différentielles à points singuliers réguliers
- On Ordinary Linear p-Adic Differential Equations