Minimum distance estimation in a finite mixture regression model
From MaRDI portal
Publication:391814
DOI10.1016/j.jmva.2013.05.008zbMath1349.62064OpenAlexW2078912995MaRDI QIDQ391814
Qingguo Tang, Rohana J. Karunamuni
Publication date: 13 January 2014
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmva.2013.05.008
asymptotic normalityrobust estimatorsfinite mixture regression modelminimum Hellinger distance estimators
Asymptotic properties of parametric estimators (62F12) Point estimation (62F10) Robustness and adaptive procedures (parametric inference) (62F35)
Related Items
Efficient and robust tests for semiparametric models, Robust and efficient estimation of effective dose, Regularized robust estimation in binary regression models, Covariance matrix estimation of the maximum likelihood estimator in multivariate clusterwise linear regression, Robust variable selection for finite mixture regression models, Computation of an efficient and robust estimator in a semiparametric mixture model, Minimum profile Hellinger distance estimation for semiparametric simple linear regression model
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Efficient Hellinger distance estimates for semiparametric models
- \(\ell_{1}\)-penalization for mixture regression models
- Simulated minimum Hellinger distance estimation of stochastic volatility models
- Minimum Hellinger distance estimation in a two-sample semiparametric model
- Minimum Hellinger distance estimation in a nonparametric mixture model
- Robust estimation of mixture complexity for count data
- The \(L_1\) convergence of kernel density estimates
- Strong consistency of k-means clustering
- Minimum Hellinger distance estimation of parameter in the random censorship model
- Minimum Hellinger-type distance estimation for censored data
- Minimum Hellinger distance estimates for parametric models
- Minimum Hellinger distance estimation for Poisson mixtures.
- Efficiency versus robustness: The case for minimum Hellinger distance and related methods
- Identifiability of models for clusterwise linear regression
- Minimum negative exponential disparity estimation of mixture proportions.
- Minimum Hellinger distance estimation for supercritical Galton-Watson processes
- Efficient maximum likelihood estimation in semiparametric mixture models
- The ``automatic robustness of minimum distance functionals
- Minimum disparity estimation for continuous models: Efficiency, distributions and robustness
- Minimum Hellinger distance estimation of mixture proportions
- One-step minimum Hellinger distance estimation
- Mixture Densities, Maximum Likelihood and the EM Algorithm
- A Comparison of Minimum Distance and Maximum Likelihood Estimation of a Mixture Proportion
- Minimum Hellinger Distance Estimation for Finite Mixtures of Poisson Regression Models and Its Applications
- Robust Estimation of Mixture Complexity
- Variable Selection in Finite Mixture of Regression Models
- On minimum Hellinger distance estimation
- Minimum Hellinger Distance Estimation for Multivariate Location and Covariance
- Minimum Hellinger Distance Estimation for the Analysis of Count Data
- Mixture Models, Outliers, and the EM Algorithm
- Minimum Hellinger Distance Estimation for Finite Mixture Models
- Mixture Models, Robustness, and the Weighted Likelihood Methodology
- Robust inference for finite Poisson mixtures