An analog of Shemetkov's conjecture for Fischer classes of finite groups.
From MaRDI portal
Publication:392721
DOI10.1134/S0037446613050030zbMath1328.20031WikidataQ122872390 ScholiaQ122872390MaRDI QIDQ392721
E. N. Zalesskaya, S. N. Vorob'ev
Publication date: 15 January 2014
Published in: Siberian Mathematical Journal (Search for Journal in Brave)
Finite solvable groups, theory of formations, Schunck classes, Fitting classes, (pi)-length, ranks (20D10) Sylow subgroups, Sylow properties, (pi)-groups, (pi)-structure (20D20)
Related Items (2)
On the class of groups with pronormal Hall \(\pi\)-subgroups. ⋮ Injectors in Fitting sets of finite groups.
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A conjugacy criterion for Hall subgroups in finite groups.
- A note on Fitting classes
- On the Shemetkov problem for Fitting classes.
- Ein Beispiel aus der Theorie der Schunckklassen
- Finite soluble groups
- Über Formationen und Halluntergruppen endlicher, auflösbarer Gruppen
- Eine Bemerkung zur kleinsten normalen Fittingklasse
- Locality of solvable subgroup-closed Fitting classes
- The Fitting class \({\mathfrak F}^*\)
- Injektoren endlicher auflösbarer Gruppen
- On the theory of Fitting classes of finite soluble groups
- Fitting classes with given properties of Hall subgroups.
- Formations of finite $C_\pi $-groups
- Theorems Like Sylow's
- On Products of Fitting Classes
- Locally defined Fitting classes
- On the injectors of finite groups
- Classes of Finite Groups
- On Fischer's Dualization of Formation Theory
This page was built for publication: An analog of Shemetkov's conjecture for Fischer classes of finite groups.