Determination of cusp forms by central values of Rankin-Selberg \(L\)-functions
DOI10.1007/S10986-011-9147-ZzbMATH Open1294.11067OpenAlexW2002408675MaRDI QIDQ392981
Publication date: 15 January 2014
Published in: Lithuanian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10986-011-9147-z
Laplace operatorEisenstein seriesRankin-Selberg \(L\)-functioncusp formMaass formKuznetsov trace formulaRankin convolution
Special values of automorphic (L)-series, periods of automorphic forms, cohomology, modular symbols (11F67) Fourier coefficients of automorphic forms (11F30) Holomorphic modular forms of integral weight (11F11) Automorphic forms, one variable (11F12) Spectral theory; trace formulas (e.g., that of Selberg) (11F72) Hecke-Petersson operators, differential operators (one variable) (11F25)
Cites Work
- Determining cusp forms by central values of Rankin-Selberg \(L\)-functions
- Determining modular forms on \(\text{SL}_2(\mathbb Z)\) by central values of convolution \(L\)-functions
- The central value of the Rankin-Selberg \(L\)-functions
- Special \(L\)-values of Rankin-Selberg convolutions
- Determination of modular forms by twists of critical \(L\)-values
- La conjecture de Weil. I
- Rankin-Selberg \(L\)-functions in the level aspect.
- Determination of GL(3) Cusp Forms by Central Values of GL(3) x GL(2) L-functions
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
Related Items (7)
This page was built for publication: Determination of cusp forms by central values of Rankin-Selberg \(L\)-functions