On the permissible arrangements of Ritz values for normal matrices in the complex plane
DOI10.1016/j.laa.2013.02.014zbMath1281.15007OpenAlexW2064275080MaRDI QIDQ393373
Publication date: 17 January 2014
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.laa.2013.02.014
convergenceeigenvaluesRitz valuesArnoldi algorithmnormal matrixKrylov subspacesharmonic Ritz valuesCauchy matrix
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Inequalities involving eigenvalues and eigenvectors (15A42) Eigenvalues, singular values, and eigenvectors (15A18) Inverse problems in linear algebra (15A29) Numerical solutions to inverse eigenvalue problems (65F18)
Related Items (3)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Computing interior eigenvalues of large matrices
- Imbedding conditions for normal matrices
- A Krylov--Schur Algorithm for Large Eigenproblems
- Implicit Application of Polynomial Filters in a k-Step Arnoldi Method
- A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems
- Any Ritz Value Behavior Is Possible for Arnoldi and for GMRES
- The Arnoldi Eigenvalue Iteration with Exact Shifts Can Fail
- Hybrid Systems: Computation and Control
- Inverse spectral problem for normal matrices and the Gauss-Lucas theorem
This page was built for publication: On the permissible arrangements of Ritz values for normal matrices in the complex plane