Canonical Semi-Invariants and the Plancherel Formula for Parabolic Groups
From MaRDI portal
Publication:3949225
DOI10.2307/1998596zbMath0488.22024OpenAlexW4239212764MaRDI QIDQ3949225
Ronald L. Lipsman, Joseph A. Wolf
Publication date: 1982
Full work available at URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.353.1815
Semisimple Lie groups and their representations (22E46) Representations of Lie and linear algebraic groups over real fields: analytic methods (22E45) Other transforms and operators of Fourier type (43A32)
Related Items (14)
Homogeneous hypercomplex structures. I: The compact Lie groups ⋮ A Plancherel Formula for Parabolic Subgroups ⋮ Lie algebraic aspects of the finite nonperiodic Toda flows ⋮ Infinite Kostant cascades and centrally generated primitive ideals of \(U(\mathfrak{n})\) in types \(A_\infty\), \(C_\infty\) ⋮ Commutative polarisations and the Kostant cascade ⋮ Unnamed Item ⋮ Homomorphisms Between Generalized Verma Modules ⋮ Homogeneous hypercomplex structures. II: Coset spaces of compact Lie groups ⋮ Stepwise Square Integrability for Nilradicals of Parabolic Subgroups and Maximal Amenable Subgroups ⋮ On the Spectra of Quantum Groups ⋮ Centrally generated primitive ideals of \(U(\mathfrak{n})\) in types B and D ⋮ The Capelli identity, tube domains, and the generalized Laplace transform ⋮ Hamiltonian and gradient structures in the Toda flows ⋮ Tempered subgroups and representations with minimal decay of matrix coefficients
Cites Work
- Unnamed Item
- La représentation coadjointe du groupe affine
- The Plancherel formula for parabolic subgroups
- The Plancherel formula for parabolic subgroups of the classical groups
- A preparation theorem for the prime spectrum of a semisimple Lie algebra
- Classification and Fourier inversion for parabolic subgroups with square integrable nilradical
- Fourier Inversion on Borel Subgroups of Chevalley Groups: The Symplectic Group Case
- Unitary representations of maximal parabolic subgroups of the classical groups
- Square Integrable Representations and a Plancherel Theorem for Parabolic Subgroups
- Sur les Representations Unitaires des Groupes de Lie Nilpotents. IV
- The action of a real semisimple group on a complex flag manifold. I: Orbit structure and holomorphic arc components
- Unitary representations of solvable Lie groups
- The plancherel formula for group extensions
- Sur les extensions des représentations irréductibles des groupes de Lie nilpotents
This page was built for publication: Canonical Semi-Invariants and the Plancherel Formula for Parabolic Groups