Nonconvex variational problems with anisotropic perturbations
From MaRDI portal
Publication:3971493
DOI10.1016/0362-546X(91)90177-3zbMath0748.49034MaRDI QIDQ3971493
Peter Sternberg, Nicholas C. Owen
Publication date: 25 June 1992
Published in: Nonlinear Analysis: Theory, Methods & Applications (Search for Journal in Brave)
Variational problems in a geometric measure-theoretic setting (49Q20) Methods involving semicontinuity and convergence; relaxation (49J45)
Related Items
A sharp-interface limit for a two-well problem in geometrically linear elasticity, Asymptotic development by \(\Gamma{}\)-convergence, Large data limit for a phase transition model with the p-Laplacian on point clouds, Long-time behavior of solutions to the generalized Allen-Cahn model with degenerate diffusivity, Interfacial energy and the Maxwell rule, On a \(\Gamma\)-limit of a family of anisotropic singular perturbations, A notion of total variation depending on a metric with discontinuous coefficients, Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals, Variational problems with singular perturbation, Variational Approximation of Functionals Defined on 1-dimensional Connected Sets: The Planar Case, Density Estimates for Degenerate Double-Well Potentials, Diffuse interfaces with sharp corners and facets: Phase field models with strongly anisotropic surfaces, Surfactants in foam stability: a phase-field model, Anisotropic singular perturbations—the vectorial case, A two-gradient approach for phase transitions in thin films, Density estimates for a variational model driven by the Gagliardo norm, Singular perturbations of variational problems of vector valued functions, Exponentially slow motion of interface layers for the one-dimensional Allen-Cahn equation with nonlinear phase-dependent diffusivity, \(\Gamma\)-convergence and stochastic homogenisation of singularly-perturbed elliptic functionals, Γ-convergence and stochastic homogenisation of phase-transition functionals, The anisotropic Cahn-Hilliard equation: regularity theory and strict separation properties, Overhang penalization in additive manufacturing via phase field structural topology optimization with anisotropic energies, Singular perturbations of variational problems arising from a two-phase transition model, Variational integrals on mappings of bounded variation and their lower semicontinuity, Gradient theory of phase transitions with general singular perturbations, A weighted gradient theory of phase transitions with a possibly singular and degenerate spatial inhomogeneity, Second order asymptotic development for the anisotropic Cahn-Hilliard functional, Geometry of quasiminimal phase transitions, Some results on surface measures in calculus of variations, Relaxation of quasiconvex functionals in \(BV(\Omega, \mathbb{R}^ N)\) for integrands \(f(x, u, \bigtriangledown u)\), Corrections to: Gradient theory of phase transitions with general singular perturbations, Two-well rigidity and multidimensional sharp-interface limits for solid-solid phase transitions, Sharp interface limit of a multi-phase transitions model under nonisothermal conditions, Finiteness and positivity results for global minimizers of a semilinear elliptic problem, A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics, On the non-local approximation of free-discontinuity problems, Stable stationary solutions induced by spatial inhomogeneity via ?-convergence, Asymptotic analysis of second order nonlocal Cahn-Hilliard-type functionals, Singular perturbations as a selection criterion for periodic minimizing sequences, Singular perturbation of an elastic energy with a singular weight, From gradient theory of phase transition to a generalized minimal interface problem with a contact energy
Cites Work
- Ordinary differential equations in \(R^ n\). Problems and methods. Transl. from the Italian by A. LoBello
- Minimal interface criterion for phase transitions in mixtures of Cahn- Hilliard fluids
- The effect of a singular perturbation on nonconvex variational problems
- Distance to \(C^k\) hypersurfaces
- Integral representation on \(BV(\Omega )\) of \(\Gamma\)-limits of variational integrals
- The gradient theory of phase transitions and the minimal interface criterion
- Nonuniqueness of equilibrium states for bars in tension
- The gradient theory of phase transitions for systems with two potential wells
- Local minimisers and singular perturbations
- Variational principles for linear initial-value problems
- Nonconvex Variational Problems With General Singular Perturbations
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item