A cohomological proof of Peterson-Kac's theorem on conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras
DOI10.1016/j.jalgebra.2013.09.037zbMath1345.17016arXiv1205.0669OpenAlexW2963214042WikidataQ115350960 ScholiaQ115350960MaRDI QIDQ397834
Publication date: 12 August 2014
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1205.0669
conjugacyLaurent polynomialsreductive group schemetorsornon-abelian cohomologyaffine Kac-Moody Lie algebra
Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67) Coverings in algebraic geometry (14E20) Galois cohomology of linear algebraic groups (11E72) Group schemes (14L15)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Kac-Moody groups, their flag varieties and representation theory
- Locally trivial principal homogeneous spaces and conjugacy theorems for Lie algebras
- Schémas en groupes. III: Structure des schémas en groupes réductifs. Exposés XIX à XXVI. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), dirigé par Michel Demazure et Alexander Grothendieck. Revised reprint
- AUTOMORPHISMS OF TOROIDAL LIE ALGEBRAS AND THEIR CENTRAL QUOTIENTS
- Infinite flag varieties and conjugacy theorems
- Covering algebras II: Isomorphism of loop algebras
- Torsors, reductive group schemes and extended affine Lie algebras
- Conjugacy theorems for loop reductive group schemes and Lie algebras
This page was built for publication: A cohomological proof of Peterson-Kac's theorem on conjugacy of Cartan subalgebras for affine Kac-Moody Lie algebras