Second-Order Elliptic Operators and Heat Kernels on Lie Groups
From MaRDI portal
Publication:3978439
DOI10.2307/2001644zbMath0739.22009OpenAlexW4235666377MaRDI QIDQ3978439
Ola Bratteli, Derek W. Robinson
Publication date: 25 June 1992
Full work available at URL: https://doi.org/10.2307/2001644
Lie algebraLie groupright Haar measureinterpolating family of semigroupspositive integral kernelright-invariant vector fieldsstrongly elliptic second-order differential operator
One-parameter semigroups and linear evolution equations (47D06) Analysis on real and complex Lie groups (22E30) Second-order elliptic equations (35J15)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Upper bounds for symmetric Markov transition functions
- A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash
- The heat semigroup and integrability of Lie algebras
- Elliptic differential operators on Lie groups
- Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées
- Interpolation of Linear Operators
- Vecteurs analytiques dans les représentations des groupes de Lie
- Continuity of Solutions of Parabolic and Elliptic Equations
- Explicit Constants for Gaussian Upper Bounds on Heat Kernels
- A harnack inequality for parabolic differential equations
- Analysis on Lie groups
This page was built for publication: Second-Order Elliptic Operators and Heat Kernels on Lie Groups