Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Some categories of modules for toroidal Lie algebras

From MaRDI portal
Publication:397977
Jump to:navigation, search

DOI10.1016/j.jalgebra.2013.11.022zbMath1362.17051arXiv1309.1530OpenAlexW2053818758WikidataQ115350951 ScholiaQ115350951MaRDI QIDQ397977

Hongyan Guo, Shaobin Tan, Qing Wang

Publication date: 12 August 2014

Published in: Journal of Algebra (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1309.1530


zbMATH Keywords

toroidal Lie algebrascategories of modulesevaluation modulesirreducible integrable modulesrestricted \(\tau\)-modules: tensor product modules


Mathematics Subject Classification ID

Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67) Special categories (18B99)




Cites Work

  • Unnamed Item
  • On certain categories of modules for affine Lie algebras
  • Integrable representations of affine Lie-algebras
  • A new family of irreducible, integrable modules for affine Lie algebras
  • Regularity of rational vertex operator algebras
  • Introduction to vertex operator algebras and their representations
  • Classification of irreducible integrable modules for toroidal Lie algebras with finite dimensional weight spaces
  • Toroidal vertex algebras and their modules


This page was built for publication: Some categories of modules for toroidal Lie algebras

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:397977&oldid=12273022"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 04:28.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki