Chebyshev Polynomials in Several Variables and the Radial Part of the Laplace-Beltrami Operator
DOI10.2307/2001804zbMath0739.22008OpenAlexW4232085133MaRDI QIDQ3984303
Publication date: 27 June 1992
Full work available at URL: https://doi.org/10.2307/2001804
generating functionsChebyshev polynomialssymmetric spacescharactersrepresentationsorthogonal polynomials in several variablesLaplace-Beltrami operatorrecurrence relationsorthogonalityfundamental weights
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Connections of hypergeometric functions with groups and algebras, and related topics (33C80) Harmonic analysis on specific compact groups (43A75) Analysis on real and complex Lie groups (22E30) Orthogonal polynomials and functions in several variables expressible in terms of special functions in one variable (33C50)
Related Items
Cites Work
- Multi-dimensional generalizations of the Chebyshev polynomials. I
- A class of orthogonal polynomials in \(k\) variables
- Zonal spherical functions on some symmetric spaces
- Formulas for Elementary Spherical Functions and Generalized Jacobi Polynomials
- Analysis on Root Systems
- Tschebyscheffpolynome in mehreren Variablen.
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item