Temperley-Lieb lattice models arising from quantum groups

From MaRDI portal
Publication:3986029

DOI10.1088/0305-4470/24/11/026zbMath0735.17032OpenAlexW2001710727MaRDI QIDQ3986029

Atsuo Kuniba, Murray T. Batchelor

Publication date: 27 June 1992

Published in: Journal of Physics A: Mathematical and General (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1088/0305-4470/24/11/026




Related Items (20)

Representations of the quantum doubles of finite group algebras and spectral parameter dependent solutions of the Yang–Baxter equationUniversal Bethe ansatz solution for the Temperley-Lieb spin chainGraded representations of the Temperley–Lieb algebra, quantum supergroups, and the Jones polynomialSemi-simplicity of Temperley-Lieb algebras of type DTensor space representations of Temperley–Lieb algebra via orthogonal projections of rank r ≥ 1Birman-Wenzl-Murakami algebra, topological parameter and Berry phaseGeneralised Temperley-Lieb algebras of type \(G(r,1,n)\)A relation for the Jones–Wenzl projector and tensor space representations of the Temperley–Lieb algebraQuantum algebras with representation ring of \(\mathfrak{sl}_2\) typeQuantum symmetry algebras of spin systems related to Temperley–Lieb R-matricesOn the \mathcal {U}_{q}[sl(2) Temperley–Lieb reflection matrices] ⋮ Temperley–LiebK-matricesBethe ansatz for the Temperley–Lieb spin chain with integrable open boundariesOn the \(\mathcal{{U}}_{q}[osp(1|2)\) Temperley-Lieb model] ⋮ Closed \(\text{SU}(2)_q\) invariant spin chainTHE REPRESENTATIONS OF TEMPERLEY-LIEB ALGEBRA AND ENTANGLEMENT IN A YANG-BAXTER SYSTEMSolvable RSOS models based on the dilute BWM algebraExact solutions of graded Temperley-Lieb Hamiltonians.Numerical algorithm for the calculation of the ground states in the \(U_qSU(2)\) symmetric spin-\(\tfrac 12\) Heisenberg chainBETHE ANSATZ SOLUTIONS FOR TEMPERLEY–LIEB QUANTUM SPIN CHAINS






This page was built for publication: Temperley-Lieb lattice models arising from quantum groups