Minkowski tensor density formulas for Boolean models
DOI10.1016/j.aam.2014.01.001zbMath1308.60019arXiv1307.0756OpenAlexW2962848433MaRDI QIDQ401505
Daniel Hug, Michael Andreas Klatt, Julia Hörrmann, Klaus R. Mecke
Publication date: 27 August 2014
Published in: Advances in Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1307.0756
anisotropystochastic geometrystationarityPoisson processBoolean modelMinkowski tensorstranslative integral geometry
Inference from spatial processes (62M30) Geometric probability and stochastic geometry (60D05) Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics (82B44) Integral geometry (53C65) Point processes (e.g., Poisson, Cox, Hawkes processes) (60G55) Random convex sets and integral geometry (aspects of convex geometry) (52A22)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Covariance matrices and valuations
- Local stereology of tensors of convex bodies
- Iterations of translative integral formulae and non-isotropic Poisson processes of particles
- Integral geometry of tensor valuations
- Curvature measures of convex bodies
- Euler characteristic and related measures for random geometric sets
- Description of continuous isometry covariant valuations on convex sets
- Measure-valued valuations and mixed curvature measures of convex bodies
- Continuous rotation invariant valuations on convex sets
- Ellipsoids and matrix-valued valuations
- Mixed curvature measures of translative integral geometry
- On support measures in Minkowski spaces and contact distributions in stochastic geometry.
- Rotational integral geometry of tensor valuations
- Local tensor valuations
- On convergence and growth of partial sums of Fourier series
- Vektorielle Integralgeometrie
- Krümmungsschwerpunkte konvexer Körper. I. (Barycenters of curvature of convex bodies. I.)
- Krümmungsschwerpunkte konvexer Körper. II. (Barycenter of curvature of convex bodies. II)
- Space, structure, and randomness. Contributions in honor of Georges Matheron in the fields of geostatistics, random sets, and mathematical morphology.
- Densities of mixed volumes for Boolean models
- Stochastic and Integral Geometry
- Morphological Characterization of Point Patterns
- Minkowski tensors of anisotropic spatial structure
- The computational geometry algorithms library CGAL
- The space of isometry covariant tensor valuations
- Random heterogeneous materials. Microstructure and macroscopic properties
This page was built for publication: Minkowski tensor density formulas for Boolean models