Predicting chaos for infinite dimensional dynamical systems: the Kuramoto-Sivashinsky equation, a case study.
DOI10.1073/pnas.88.24.11129zbMath0757.58027OpenAlexW2163786768WikidataQ37641704 ScholiaQ37641704MaRDI QIDQ4021805
Demetrios T. Papageorgiou, Yiorgos-Sokratis Smyrlis
Publication date: 17 January 1993
Published in: Proceedings of the National Academy of Sciences (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1073/pnas.88.24.11129
chaosKuramoto-Sivashinsky equationperiod doubling bifurcationsinfinite dimensional dynamical systems
Dynamical systems in fluid mechanics, oceanography and meteorology (37N10) Strange attractors, chaotic dynamics of systems with hyperbolic behavior (37D45) Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems (37L10)
Related Items