Strong convergence theorems for the split variational inclusion problem in Hilbert spaces
DOI10.1186/1687-1812-2013-350zbMath1476.47050OpenAlexW2113926992WikidataQ59294795 ScholiaQ59294795MaRDI QIDQ402500
Publication date: 28 August 2014
Published in: Fixed Point Theory and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1186/1687-1812-2013-350
strong convergenceHilbert spacesoptimization problemsplit feasibility problemresolvent mappingsplit variational inclusion problemzero pointregularized iterationHalpern-Mann type iteration
Iterative procedures involving nonlinear operators (47J25) Variational and other types of inclusions (47J22)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Nonlinear algorithms approach to split common solution problems
- Split monotone variational inclusions
- Approximating curve and strong convergence of the \(CQ\) algorithm for the split feasibility problem
- Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization
- Produits infinis de resolvantes
- A multiprojection algorithm using Bregman projections in a product space
- Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations
- On variable-step relaxed projection algorithm for variational inequalities
- Approximating solutions of maximal monotone operators in Hilbert spaces
- Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups.
- Forcing strong convergence of proximal point iterations in a Hilbert space
- Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space
- Halpern's type iterations with perturbations in Hilbert spaces: equilibrium solutions and fixed points
- Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces
- The strong convergence of a KM–CQ-like algorithm for a split feasibility problem
- Self-adaptive projection methods for the multiple-sets split feasibility problem
- Iterative Algorithms for Nonlinear Operators
- A variable Krasnosel'skii–Mann algorithm and the multiple-set split feasibility problem
- On the Convergence of the Proximal Point Algorithm for Convex Minimization
- Iteration methods for convexly constrained ill-posed problems in hilbert space
- Monotone Operators and the Proximal Point Algorithm
- Strong Convergence of a Proximal-Type Algorithm in a Banach Space
- A unified treatment of some iterative algorithms in signal processing and image reconstruction
- Iterative oblique projection onto convex sets and the split feasibility problem
- The relaxed CQ algorithm solving the split feasibility problem
- FIXED-POINT THEOREMS FOR NONCOMPACT MAPPINGS IN HILBERT SPACE
- A note on the CQ algorithm for the split feasibility problem
This page was built for publication: Strong convergence theorems for the split variational inclusion problem in Hilbert spaces