On the Diophantine equation \(NX^2 + 2^L3^M = Y^N\)
From MaRDI portal
Publication:402643
DOI10.1016/j.jnt.2014.02.008zbMath1309.11027arXiv1304.6413OpenAlexW1765581411MaRDI QIDQ402643
Eva G. Goedhart, Helen G. Grundman
Publication date: 28 August 2014
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1304.6413
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- On the Diophantine equation \(2^m + nx^2 = y^n\)
- On the Diophantine equation \(nx^2+2^{2m}=y^n\)
- On the generalized Ramanujan-Nagell equation \(x^2+D=p^z\)
- On the equation \(x^2 + 2^a \cdot 3^b = y^n\)
- Existence of primitive divisors of Lucas and Lehmer numbers
- Primitive Divisors of Lucas and Lehmer Sequences