A Brumer-Stark conjecture for non-abelian Galois extensions
From MaRDI portal
Publication:403281
DOI10.1016/j.jnt.2014.02.020zbMath1295.11125OpenAlexW2042831897WikidataQ123223932 ScholiaQ123223932MaRDI QIDQ403281
Gaelle Dejou, Xavier-François Roblot
Publication date: 29 August 2014
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2014.02.020
Class numbers, class groups, discriminants (11R29) Zeta functions and (L)-functions of number fields (11R42)
Related Items (4)
Integrality of Stickelberger elements attached to unramified extensions of imaginary quadratic fields ⋮ On the semi-simple case of the Galois Brumer-Stark conjecture for monomial groups ⋮ Annihilating wild kernels ⋮ Conjectures of Brumer, Gross and Stark
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On non-abelian Stark-type conjectures
- On the equivariant Tamagawa number conjecture in tame CM-extensions
- On derivatives of Artin \(L\)-series
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- Values of abelian \(L\)-functions at negative integers over totally real fields
- Values at negative integers of zeta functions and \(p\)-adic zeta functions
- On the equivariant Tamagawa number conjecture for Tate motives
- Equivariant Iwasawa theory and non-abelian Stark-type conjectures
- Galois groups of exponent two and the Brumer-Stark conjecture.
- Base change for the conjecture of BrumerStark
- The Brumer-Stark conjecture in some families of extensions of specified degree
- On non-abelian Brumer and Brumer–Stark conjecture for monomial CM-extensions
This page was built for publication: A Brumer-Stark conjecture for non-abelian Galois extensions