Potential function estimates for quasi-Einstein metrics
From MaRDI portal
Publication:403308
DOI10.1016/j.jfa.2014.07.027zbMath1297.53037OpenAlexW1999524925MaRDI QIDQ403308
Publication date: 29 August 2014
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2014.07.027
Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) Methods of global Riemannian geometry, including PDE methods; curvature restrictions (53C21)
Related Items
Gap results for compact quasi-Einstein metrics ⋮ On gradient quasi-Einstein solitons ⋮ Noncompact quasi‐Einstein manifolds conformal to a Euclidean space ⋮ Lower bound of the scalar curvature for quasi-Einstein metrics ⋮ Vanishing results for the cotton tensor on gradient quasi-Einstein solitons ⋮ On Ricci-harmonic metrics
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On noncompact \(\tau \)-quasi-Einstein metrics
- Smooth metric measure spaces with non-negative curvature
- Analysis of weighted Laplacian and applications to Ricci solitons
- New inhomogeneous Einstein metrics on sphere bundles over Einstein-Kähler manifolds
- Rigidity of quasi-Einstein metrics
- On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below
- The nonexistence of quasi-Einstein metrics
- On complete gradient shrinking Ricci solitons
- On -spectrum and \(\tau \)-quasi-Einstein metric
- Strong uniqueness of the Ricci flow
- Comparison geometry for the Bakry-Emery Ricci tensor
- A complete proof of the Poincaré and geometrization conjectures -- application of the Hamilton-Perelman theory of the Ricci flow
- The upper bound of the \({{\text L}_{\mu}^2}\) spectrum
- Some geometric properties of the Bakry-Émery-Ricci tensor
- Diameter estimate for compact quasi-Einstein metrics
- Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds
- Rigid properties of quasi-Einstein metrics
- Compact Einstein warped product spaces with nonpositive scalar curvature
- On the completeness of gradient Ricci solitons