Mahler's polynomial approximation for odd and even \(p\)-adic functions
DOI10.1016/j.jnt.2014.05.021zbMath1303.13022OpenAlexW2085785380WikidataQ114157526 ScholiaQ114157526MaRDI QIDQ404360
Jean-Luc Chabert, Youssef Fares, Sabine Evrard
Publication date: 4 September 2014
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2014.05.021
integer-valued polynomials\(v\)-orderingseven polynomialsodd polynomialsregular basesultrametric continuous functions
Binomial coefficients; factorials; (q)-identities (11B65) Functional analysis over fields other than (mathbb{R}) or (mathbb{C}) or the quaternions; non-Archimedean functional analysis (46S10) Polynomial rings and ideals; rings of integer-valued polynomials (13F20) Non-Archimedean function theory (30G06) Non-Archimedean valued fields (12J25) Valued fields (12J10)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Limits of characteristic sequences of integer-valued polynomials on homogeneous sets
- On the ultrametric Stone-Weierstrass theorem and Mahler's expansion
- E-sequences and the Stone-Weierstrass theorem
- Regular subsets of valued fields and Bhargava's \(v\)-orderings
- The Factorial Function and Generalizations
- Integer-Valued Polynomials
- A correction to the paper An Interpolation Series for continuous functions of a p-adic variable.
- Une Caractérisation des Polynômes Prenant des Valeurs Entières Sur Tous les Nombres Premiers
- P-orderings and polynomial functions on arbitrary subsets of Dedekind rings.
- Subsets of ℤ with Simultaneous Orderings
This page was built for publication: Mahler's polynomial approximation for odd and even \(p\)-adic functions