Tinkertoys for Gaiotto duality
From MaRDI portal
Publication:406785
DOI10.1007/JHEP11(2010)099zbMATH Open1294.81177arXiv1008.5203OpenAlexW3103479215MaRDI QIDQ406785
Author name not available (Why is that?)
Publication date: 29 August 2014
Published in: (Search for Journal in Brave)
Abstract: We describe a procedure for classifying N=2 superconformal theories of the type introduced by Davide Gaiotto. Any curve, C, on which the 6D A_{N-1} SCFT is compactified, can be decomposed into 3-punctured spheres, connected by cylinders. We classify the spheres, and the cylinders that connect them. The classification is carried out explicitly, up through N=5, and for several families of SCFTs for arbitrary N. These lead to a wealth of new S-dualities between Lagrangian and non-Lagrangian N=2 SCFTs.
Full work available at URL: https://arxiv.org/abs/1008.5203
No records found.
No records found.
This page was built for publication: Tinkertoys for Gaiotto duality
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q406785)