On solutions to min $$(X,{\text{ Y}})\mathop = \limits^d aX$$ and min $$(X,{\text{ Y}})\mathop = \limits^d aX\mathop = \limits^d bY$$
From MaRDI portal
Publication:4074162
DOI10.1007/BF00533315zbMath0314.60016OpenAlexW2044914656MaRDI QIDQ4074162
Barry C. Arnold, Dean L. Isaacson
Publication date: 1976
Published in: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf00533315
Related Items (3)
Characterizations of the General Multivariate Weibull Distributions ⋮ On norml characterizations by the distribution of linear forms, assuming finite variance ⋮ Multivariate semi-Weibull distributions
Cites Work
This page was built for publication: On solutions to min $$(X,{\text{ Y}})\mathop = \limits^d aX$$ and min $$(X,{\text{ Y}})\mathop = \limits^d aX\mathop = \limits^d bY$$