Number of singular points of an annulus in \(\mathbb C^{2}\)
From MaRDI portal
Publication:407797
DOI10.5802/AIF.2650zbMath1238.14049arXiv1005.0980OpenAlexW2963145567MaRDI QIDQ407797
Henryk Żołądek, Marciej Borodzik
Publication date: 28 March 2012
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1005.0980
Plane and space curves (14H50) Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem) (14R10)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Complex algebraic plane curves via the Poincaré-Hopf formula. I. Parametric lines
- Complex algebraic plane curves via Poincaré-Hopf formula. III: Codimension bounds
- On the logarithmic Kodaira dimension of the complement of a curve in \(P^2\)
- Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l'espace \(C^2\)
- On rational cuspidal curves. I: Sharp estimate for degree via multiplicities
- Closed embeddings of \(\mathbb C^*\) in \(\mathbb C^2\). I.
- Complex algebraic plane curves via Poincaré-Hopf formula. II: Annuli
This page was built for publication: Number of singular points of an annulus in \(\mathbb C^{2}\)