Topology and logic as a source of algebra
DOI10.1090/S0002-9904-1976-13928-6zbMath0324.55001MaRDI QIDQ4087978
Publication date: 1976
Published in: Bulletin of the American Mathematical Society (Search for Journal in Brave)
Algebraic field extensions (12F05) Cohomology of groups (20J06) Homological methods in group theory (20J05) Bar and cobar constructions (57T30) Ext and Tor, generalizations, Künneth formula (category-theoretic aspects) (18G15) Multilinear algebra, tensor calculus (15A69) Universal coefficient theorems, Bockstein operator (55U20) Research exposition (monographs, survey articles) pertaining to algebraic topology (55-02) Homological methods (field theory) (12G99) Research exposition (monographs, survey articles) pertaining to category theory (18-02) Research exposition (monographs, survey articles) pertaining to ordered structures (06-02)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Extensions and obstructions for rings
- A combinatorial definition of homotopy groups
- Erweiterung von Gruppen und ihren Isomorphismen
- Untersuchungen über das logische Schliessen. I
- A generalization of the functorial calculus
- On the deformation of rings and algebras. II
- The bar construction and Abelian H-spaces
- Homotopical algebra
- Milgram's classifying space of a topological group
- Reports of the Midwest category seminar. IV
- Coherence in closed categories
- Categories tannakiennes
- On MacLane's conditions for coherence of natural associativities, commutativities, etc
- On the cohomology and K-theory of the general linear groups over a finite field
- The maps of an n-complex into an n-sphere
- The uniqueness of the power series representation of certain fields with valuations
- Tensor products of abelian groups
- Subfields and automorphism groups of \(p\)-adic fields
- Modular fields. I. Separating transcendence bases
- Note on the relative structure of \(p\)-adic fields
- Fundamentalgruppe und zweite Bettische Gruppe
- Nachtrag zu der Arbeit: Fundamentalgruppe und zweite Bettische Gruppe
- Semi-simplicial complexes and singular homology
- Relations between homology and homotopy groups of spaces. II
- A certain exact sequence
- Operations induced in function classes
- The higher dimensional cohomology groups of class field theory
- On the groups \(H(\Pi,n)\). I
- On the three-dimensional cohomology group of Lie algebras
- On the groups \(H(\Pi,n)\). II
- Group extensions and homology
- Singular homology theory
- Relations between homology and homotopy groups of spaces
- Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehören
- Der Kohomologie-Ring einer beliebigen Gruppe
- Der Einfluß der Fundamentalgruppe auf die Bettischen Gruppen
- Adjoint Functors
- Coherence and non-commutative diagrams in closed categories
- Simplicial methods and the interpretation of “triple” cohomology
- Les groupes de Betti d'un complexe infini
- On the Abstract Properties of Linear Dependence
- K (π n )-Torsors and the Interpretation of “Triple” Cohomology
- The cohomology of classifying spaces of 𝐻-spaces
- AN ELEMENTARY THEORY OF THE CATEGORY OF SETS
- Deductive systems and categories
- Cohomologie des algèbres associatives
- Aspects of topoi
- Homotopy Associativity of H-Spaces. I
- Homology of Iterated Loop Spaces
- FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES
- Some Interpretations of Abstract Linear Dependence in Terms of Projective Geometry
- Steinitz Field Towers for Modular Fields
- Modular Fields
- Homology of Spaces with Operators. II
- The Adjoint of a Bilinear Operation
- Acyclic Models
- Extensions of Lie Algebras and the Third Cohomology Group
- Lie Algebra Kernels and Cohomology
- Cohomology Classes of Finite Type and Finite Dimensional Kernels for Lie Algebras
- The Homology Products in K(II, n)
- Relations between Homology and Homotopy Groups
- Natural Isomorphisms in Group Theory
- General Theory of Natural Equivalences
- Normal Algebraic Number Fields
- The Generation of Inseparable Fields
- Homology