Global optimization of mixed-integer nonlinear (polynomial) programming problems: The Bernstein polynomial approach
From MaRDI portal
Publication:411431
DOI10.1007/s00607-011-0175-7zbMath1236.90084OpenAlexW2088886764MaRDI QIDQ411431
Sharad Bhartiya, Bhagyesh V. Patil, Paluri S. V. Nataraj
Publication date: 4 April 2012
Published in: Computing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00607-011-0175-7
Mixed integer programming (90C11) Nonconvex programming, global optimization (90C26) Interval and finite arithmetic (65G30)
Related Items (8)
Hyper-arc consistency of polynomial constraints over finite domains using the modified Bernstein form ⋮ Experiments with hybrid Bernstein global optimization algorithm for the OPF problem in power systems ⋮ Algorithms for unconstrained global optimization of nonlinear (polynomial) programming problems: the single and multi-segment polynomial B-spline approach ⋮ An improved Bernstein global optimization algorithm for MINLP problems with application in process industry ⋮ Matrix methods for the tensorial Bernstein form ⋮ A hybrid artificial immune network for detecting communities in complex networks ⋮ Enhanced linear reformulation for engineering optimization models with discrete and bounded continuous variables ⋮ Univariate parameterization for global optimization of mixed-integer polynomial problems
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Algebraic manipulation in the Bernstein form made simple via convolutions
- An efficient and safe framework for solving optimization problems
- An algorithmic framework for convex mixed integer nonlinear programs
- An algorithm for constrained global optimization of multivariate polynomials using the Bernstein form and John optimality conditions
- Fast construction of constant bound functions for sparse polynomials
- An efficient algorithm for range computation of polynomials using the Bernstein form
- Solving mixed integer nonlinear programs by outer approximation
- Global optimization with higher order inclusion function forms. I: A combined Taylor-Bernstein form
- A provable better Branch and Bound method for a nonconvex integer quadratic programming problem
- An algorithm for global optimization using the Taylor-Bernstein form as inclusion function
- Convexification and global optimization in continuous and mixed-integer nonlinear programming. Theory, algorithms, software, and applications
- Solving large MINLPs on computational grids
- Branching rules revisited
- Relaxation and decomposition methods for mixed integer nonlinear programming.
- Generalized Benders decomposition
- Branching and bounds tighteningtechniques for non-convex MINLP
- The global solver in the LINDO API
- Branch and Bound Experiments in Convex Nonlinear Integer Programming
- An outer-approximation algorithm for a class of mixed-integer nonlinear programs
- A Computational Study of Search Strategies for Mixed Integer Programming
This page was built for publication: Global optimization of mixed-integer nonlinear (polynomial) programming problems: The Bernstein polynomial approach