Statistical approximation of a kind of Kantorovich type \(q\)-Szász-Mirakjan operators
From MaRDI portal
Publication:412771
DOI10.1016/j.na.2011.11.029zbMath1239.41006OpenAlexW1999435569MaRDI QIDQ412771
Publication date: 4 May 2012
Published in: Nonlinear Analysis. Theory, Methods \& Applications. Series A: Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.na.2011.11.029
\(q\)-integersKorovkin type approximation theoremKantorovich type operatorsSzász-Mirakjan operatorsweighted \(A\)-statistical approximation
Related Items
Generalized Baskakov-Szász type operators, Rate of convergence of Szász-beta operators based on \(q\)-integers, Stancu type generalization of the \(q\)-Phillips operators, Bernstein-Schurer-Kantorovich operators based on \(q\)-integers, Voronovskaja Type Approximation Theorem for q-Szasz–Schurer Operators, General gamma type operators based on \( q\)-integers, Approximation properties of bivariate extension of \(q\)-Szász-Mirakjan-Kantorovich operators, Quantitative convergence results for a family of hybrid operators, Szász-Durrmeyer type operators based on Charlier polynomials, \(q\)-Lupas Kantorovich operators based on Polya distribution, Some applications of new modified \(q\)-integral type operators, Unnamed Item, Bivariate \(q\)-Bernstein-Schurer-Kantorovich operators, Szász-Baskakov type operators based on \(q\)-integers
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Weighted approximation by \(q\)-Szász-King type operators
- Weighted statistical approximation by Kantorovich type \(q\)-Szász-Mirakjan operators
- Statistical approximation of Baskakov and Baskakov-Kantorovich operators based on the \(q\)-integers
- On \(q\)-parametric Szász-Mirakjan operators
- The \(q\)-derivate and applications to \(q\)-Sz'asz Mirakyan operators
- \(A\)-statistical convergence of sequences of convolution operators
- Approximation by Szasz-Mirakjan-Kantorovich operators in \(L^p\) \((p>1)\)
- Some approximation theorems via statistical convergence.
- Interpolation and approximation by polynomials
- Densities and summability
- Statistical approximation properties of \(q\)-Baskakov-Kantorovich operators
- The inequalities for some types of \(q\)-integrals
- Some approximation properties of \(q\)-Durrmeyer operators
- Weighted simultaneous approximation with Baskakov type operators
- On the Durrmeyer type modification of the \(q\)-Baskakov type operators
- Statistical approximation by positive linear operators
- Generalization of Bernstein's polynomials to the infinite interval
- Sur la convergence statistique
- Quantum calculus