A note on the relative class number of the cyclotomic \(\mathbb Z_p\)-extension of \(\mathbb Q(\sqrt{-p})\).
From MaRDI portal
Publication:413796
DOI10.3792/PJAA.88.16zbMath1333.11103OpenAlexW1998134363MaRDI QIDQ413796
Humio Ichimura, Shoichi Nakajima
Publication date: 7 May 2012
Published in: Proceedings of the Japan Academy. Series A (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.pja/1325264391
Quadratic extensions (11R11) Class numbers, class groups, discriminants (11R29) Cyclotomic extensions (11R18)
Related Items (4)
Biographical Sketch of Professor Humio Ichimura ⋮ A note on the relative class number of the cyclotomic \(\mathbb Z_p\)-extension of \(\mathbb Q(\sqrt{-p})\). II ⋮ Relative class numbers inside the \(p\)th cyclotomic field ⋮ Note on the class number of the \(p\)th cyclotomic field
Cites Work
- Unnamed Item
- Unnamed Item
- On the 2-part of the ideal class group of the cyclotomic \(\mathbb Z_p\)-extension over the rationals
- The ideal class group of the basic \(\mathbb Z_p\)-extension over an imaginary quadratic field
- The non-p-part of the class number in a cyclotomic \(\mathbb{Z}_p\)-extension
- Ideal Class Groups of Iwasawa-Theoretical Abelian Extensions Over the Rational Field
- Abschätzungen für die Klassenzahlen der quadratischen Körper
This page was built for publication: A note on the relative class number of the cyclotomic \(\mathbb Z_p\)-extension of \(\mathbb Q(\sqrt{-p})\).