A remark on wavelet bases in weighted \(L_p\) spaces
DOI10.1155/2012/328310zbMath1245.46026OpenAlexW2003884695WikidataQ58908202 ScholiaQ58908202MaRDI QIDQ416316
Publication date: 10 May 2012
Published in: Journal of Function Spaces and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2012/328310
Nontrigonometric harmonic analysis involving wavelets and other special systems (42C40) Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces (46B15)
Related Items (3)
Cites Work
- Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I
- Wavelet bases in the weighted Besov and Triebel-Lizorkin spaces with \(A_p^{\text{loc}}\)-weights
- Multiresolution approximations and wavelet bases of weighted \(L^p\) spaces
- Local means and wavelets in function spaces with local Muckenhoupt weights
- Ondelettes et poids de Muckenhoupt
- Function Spaces with Exponential Weights I
- Wavelet bases and entropy numbers in weighted function spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A remark on wavelet bases in weighted \(L_p\) spaces