An algorithm for the classification of 3-dimensional complex Leibniz algebras
DOI10.1016/j.laa.2011.11.039zbMath1280.17004OpenAlexW2018346921WikidataQ122931695 ScholiaQ122931695MaRDI QIDQ417514
Manuel Avelino Insua Hermo, Manuel Ladra Gonzalez, José Manuel Casas Mirás
Publication date: 14 May 2012
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.laa.2011.11.039
Symbolic computation and algebraic computation (68W30) Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases) (13P10) Leibniz algebras (17A32) Computational methods for problems pertaining to nonassociative rings and algebras (17-08)
Related Items (35)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Test for Leibniz \(n\)-algebra structure
- A noncommutative version of Lie algebras: Leibniz algebras
- Classification of Solvable Lie Algebras
- Algèbres de Leibnitz : définitions, propriétés
- ON NILPOTENT AND SIMPLE LEIBNIZ ALGEBRAS
- Varieties of Nilpotent Complex Leibniz Algebras of Dimension Less than Five
This page was built for publication: An algorithm for the classification of 3-dimensional complex Leibniz algebras