A uniform Berry-Esseen theorem on \(M\)-estimators for geometrically ergodic Markov chains
From MaRDI portal
Publication:418248
DOI10.3150/10-BEJ347zbMath1279.60089arXiv1205.2947OpenAlexW2035226468MaRDI QIDQ418248
James Ledoux, Loïc Hervé, Valentin Patilea
Publication date: 28 May 2012
Published in: Bernoulli (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1205.2947
Related Items (7)
The Berry-Esseen bounds for kernel density estimator under dependent sample ⋮ Multidimensional renewal theory in the non-centered case: application to strongly ergodic Markov chains ⋮ Local limit theorem for a Markov additive process on with a null recurrent internal Markov chain ⋮ Limit theorems for stationary Markov processes with \(L^{2}\)-spectral gap ⋮ Asymptotic and non-asymptotic analysis for a hidden Markovian process with a quantum hidden system ⋮ On the recurrence set of planar Markov random walks ⋮ Parametric first-order Edgeworth expansion for Markov additive functionals. Application to \(M\)-estimations
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps
- Markov chains and stochastic stability
- Rate of convergence in the central limit theorem for strongly ergodic Markov chains
- Étude de l'estimateur du maximum de vraisemblance dans le cas d'un processus autorégressif: convergence, normalité asymptotique, vitesse de convergence. (Asymptotic behaviour of maximum likelihood estimator in an autoregressive process: consistency, asymptotic distribution and expansion, rate of convergence)
- A remark on approximate \(M\)-estimators
- Computable bounds for geometric convergence rates of Markov chains
- Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes
- Central limit theorems for iterated random Lipschitz mappings.
- The Berry-Esseen bound for minimum contrast estimates
- The Nagaev-Guivarc’h method via the Keller-Liverani theorem
- Banach spaces adapted to Anosov systems
- ON LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED MARKOV JUMP PROCESSES
- [https://portal.mardi4nfdi.de/wiki/Publication:3933699 The Berry-Esse�n theorem for strongly mixing Harris recurrent Markov chains]
- A Berry–Esséen Bound for M‐estimators
- The accuracy of the normal approximation for minimum contrast estimates
- On the rate of convergence of estimators for Markov processes
This page was built for publication: A uniform Berry-Esseen theorem on \(M\)-estimators for geometrically ergodic Markov chains