Numerical Solution of an Exterior Neumann Problem Using a Double Layer Potential
DOI10.2307/2006329zbMath0405.65060OpenAlexW4252068017MaRDI QIDQ4191550
Jean-Claude Nédélec, Jean Giroire
Publication date: 1978
Full work available at URL: https://doi.org/10.2307/2006329
Finite Element MethodNumerical SolutionDouble Layer PotentialLaplace OperatorVariational FormulationOptimal Error EstimatesExterior Neumann Problem
Numerical methods for integral equations (65R20) Boundary value problems for second-order elliptic equations (35J25) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05)
Related Items (41)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Curved finite element methods for the solution of singular integral equations on surfaces in \(R^3\)
- Applications of extrapolation techniques to multidimensional quadrature of some integrand functions with a singularity
- A finite element method for some integral equations of the first kind
- General Lagrange and Hermite interpolation in \(R^n\) with applications to finite element methods
- Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace
- An Error Functional Expansion for N-Dimensional Quadrature with an Integrand Function Singular at a Point
- Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbf {R}^3$
This page was built for publication: Numerical Solution of an Exterior Neumann Problem Using a Double Layer Potential