Canonical homotopy operators for the $\overline{\partial}$ complex in strictly pseudoconvex domains
From MaRDI portal
Publication:4237913
DOI10.24033/bsmf.2326zbMath0930.32005OpenAlexW1495934867MaRDI QIDQ4237913
Joaquim Ortega-Cerdà, Mats Andersson, Jörgen Boo
Publication date: 13 July 1999
Published in: Bulletin de la Société mathématique de France (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=BSMF_1998__126_2_245_0
Bergman projectionintegral formulastrictly pseudoconvex domainBergman metric\(\overline\partial\) complexcanonical homotopy operators
(overlinepartial) and (overlinepartial)-Neumann operators (32W05) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Integral formulas for the \(\partial\overline\partial\)-equation and zeros of bounded holomorphic functions in the unit ball
- \(L^ 2\)-cohomology and index theorem for the Bergman metric
- Values in the interior of the \(L^ 2\)-minimal solutions of the \(\partial {\bar \partial}\)-equation in the unit ball of \({\mathbb{C}}^ n\)
- Formules explicites pour les solutions minimales de l'équation \(\overline\partial u=f\) dans la boule et dans le polydisque de \(\mathbb C^n\)
- Henkin-Ramirez kernels with weight factors
- The Szegö kernel in terms of Cauchy-Fantappie kernels
- The $\overline \partial$-Neumann Solution to the Inhomogeneous Cauchy-Riemann Equation in the Ball in $C^n$
- The Hölder continuity of the Bergman projection and proper holomorphic mappings
- Formulars for the $L^2$-minimal solutions of the $\partial\bar{\partial}$-equation in the unit ball of $\mathsf{C}^N$
- Valeurs au bord pour les solutions de l'opérateur $d^n$, et caractérisation des zéros des fonctions de la classe de Nevanlinna
- Approximate formulas for canonical homotopy operators for the $\bar \partial$ complex in strictly pseudoconvex domains
- The Neumann Problem for the Cauchy-Riemann Complex. (AM-75)