Potential theory and Lefschetz theorems for arithmetic surfaces
From MaRDI portal
Publication:4248068
DOI10.1016/S0012-9593(99)80015-9zbMath0931.14014MaRDI QIDQ4248068
Publication date: 25 August 1999
Published in: Annales Scientifiques de l’École Normale Supérieure (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=ASENS_1999_4_32_2_241_0
Green functionsfundamental groupArakelov geometryArakelov divisoreffective divisorarithmetic surfacesArakelov intersection theory
Arithmetic varieties and schemes; Arakelov theory; heights (14G40) Global ground fields in algebraic geometry (14G25) Other generalizations (nonlinear potential theory, etc.) (31C45) Special surfaces (14J25)
Related Items
An arithmetic Hilbert–Samuel theorem for singular hermitian line bundles and cusp forms, Negative curves of small genus on surfaces, Capacity theory and arithmetic intersection theory, Heights of vector bundles and the fundamental group scheme of a curve, An arithmetic Hilbert-Samuel theorem for pointed stable curves, Toward Dirichlet's unit theorem on arithmetic varieties, An Arakelov tautological boundary divisor on \({\overline{\mathcal{M}}_{1,1}}\), Correspondences in Arakelov geometry and applications to the case of Hecke operators on modular curves, Riemann-Roch isometries in the non-compact orbifold setting, Arithmetic Siegel-Weil formula on \(X_{0}(N)\), Valuations and plurisubharmonic singularities, Hodge index inequality in geometry and arithmetic: a probabilistic approach, Algebraic solutions of differential equations over ℙ1 −{0,1,∞}, Unitary cycles on Shimura curves and the Shimura lift II, Analytic Curves in Algebraic Varieties over Number Fields, The arithmetic Riemann-Roch theorem and the Jacquet-Langlands correspondence, Exceptional isogenies between reductions of pairs of elliptic curves, On the slopes of the lattice of sections of hermitian line bundles, THE JACQUET–LANGLANDS CORRESPONDENCE AND THE ARITHMETIC RIEMANN–ROCH THEOREM FOR POINTED CURVES
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Étude et extensions du principe de Dirichlet
- Calculus on arithmetic surfaces
- The topology of normal singularities of an algebraic surface and a criterion for simplicity
- Arithmetic intersection theory
- Capacity theory on algebraic curves
- A vanishing theorem on arithmetic surfaces
- Positive line bundles on arithmetic surfaces
- The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface
- Formal functions and formal embeddings
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- Séminaire de géométrie algébrique du Bois-Marie 1967--1969. Groupes de monodromie en géométrie algébrique (SGA 7 II) par P. Deligne et N. Katz. Exposés X à XXII
- Canonical models of surfaces of general type
- Les potentiels d'energie finie
- Les espaces du type de Beppo Levi
- DIRICHLET SPACES
- Groupes de Picard et problèmes de Skolem. I
- Heights and Arakelov's Intersection Theory
- Heights of Projective Varieties and Positive Green Forms
- Galois Covers of an Arithmetic Surface
- Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields