A pollution controlled hybrid interior error estimator for linear elastostatics
DOI<507::AID-NME434>3.0.CO;2-B 10.1002/(SICI)1097-0207(19981015)43:3<507::AID-NME434>3.0.CO;2-BzbMath0936.74070OpenAlexW2033978327MaRDI QIDQ4253801
C. S. Krishnamoorthy, Subrata Mukherjee
Publication date: 9 August 1999
Full work available at URL: https://doi.org/10.1002/(sici)1097-0207(19981015)43:3<507::aid-nme434>3.0.co;2-b
adaptivitya posteriori error estimatorslinear elastostaticsa priori interior region estimateseffects of pollutionlocal rates of convergencepollution error estimator
Classical linear elasticity (74B05) Finite element methods applied to problems in solid mechanics (74S05) Error bounds for boundary value problems involving PDEs (65N15)
Related Items (2)
Cites Work
- Unnamed Item
- Meshing by successive superelement decomposition (MSD) -- A new approach to quadrilateral mesh generation
- Superconvergence recovery technique anda posteriori error estimators
- Error estimators using global-local methods
- The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique
- The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity
- Optimal stress locations in finite element models
- Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements
- Adaptive global–local refinement strategy based on the interior error estimates of the h‐method
- Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions
- A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method
This page was built for publication: A pollution controlled hybrid interior error estimator for linear elastostatics