Abstract capacitary estimates and the completeness and separability of certain classes of non-locally convex topological vector spaces
DOI10.1016/j.jfa.2012.03.012zbMath1281.46029OpenAlexW2087462740MaRDI QIDQ425750
Marius Mitrea, Irina Mitrea, Elia Ziadé, Dorina Mitrea
Publication date: 8 June 2012
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jfa.2012.03.012
capacityBoolean algebracompletenessseparabilitypointwise convergenceFatou propertyquasi-metric spacemetrization theoremquasi-Banach function spacesemigroupoid
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.) (46A16)
Related Items (4)
Cites Work
- Complex interpolation of \(H^ p\) spaces on product domains
- A discrete transform and decompositions of distribution spaces
- The spaces \(L^ p\), with mixed norm
- Optimal domain for the Hardy operator
- Optimal domain and integral extension of operators, acting in function spaces
- Harmonic analysis on spaces of homogeneous type. With a preface by Yves Meyer
- A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces
- Some new function spaces and their applications to harmonic analysis.
- \(L^1\)-spaces of vector measures defined on \(\delta\)-rings
- Groupoid metrization theory. With applications to analysis on quasi-metric spaces and functional analysis
- Capacitary function spaces
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- A generalization of Riesz-Fischer's theorem
- On the Regularity of Green Functions in Lipschitz Domains
- Entropy Numbers and Approximation Numbers in Function Spaces, II
- Interpolation of operations and Orlicz classes
- Extensions of Hardy spaces and their use in analysis
- Some Remarks on Orlicz‐Lorentz Spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Abstract capacitary estimates and the completeness and separability of certain classes of non-locally convex topological vector spaces