Approximation of the vibration modes of a plate by Reissner-Mindlin equations
DOI10.1090/S0025-5718-99-01094-7zbMath0945.74030OpenAlexW2023189634WikidataQ58040896 ScholiaQ58040896MaRDI QIDQ4257685
Luis Hervella-Nieto, Ricardo G. Durán, Rodolfo Rodríguez, E. Liberman, Jorge Eduardo Solomin
Publication date: 31 August 1999
Published in: Mathematics of Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s0025-5718-99-01094-7
regularityeigenvaluesfinite element approximationeigenfunctionscompact operatorconvergence rateoptimal order of convergencelocking-free methodMITC elements\(H(1)\)-normabstract spectral theorylowest order methodReissner-Mindlin plate bending equationuniform separation of spectrum
Vibrations in dynamical problems in solid mechanics (74H45) Plates (74K20) Finite element methods applied to problems in solid mechanics (74S05) Numerical approximation of solutions of dynamical problems in solid mechanics (74H15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Finite element methods (Part 1)
- Design principles and error analysis for reduced-shear plate-bending finite elements
- A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation
- Finite Element Interpolation of Nonsmooth Functions Satisfying Boundary Conditions
- A Uniformly Accurate Finite Element Method for the Reissner–Mindlin Plate
- Rayleigh-Ritz vibration analysis of Mindlin plates
- ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES
- Mixed and Hybrid Finite Element Methods
- Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates
- On Mixed Finite Element Methods for the Reissner-Mindlin Plate Model