Le problème d'Anscombe pour les lois binomiales négatives généralisées
From MaRDI portal
Publication:4262101
DOI10.2307/3315501zbMath0936.62024OpenAlexW2046519278MaRDI QIDQ4262101
Publication date: 18 May 2000
Published in: Canadian Journal of Statistics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2307/3315501
moment estimateexponential dispersion modelsvariation-diminishingmaximum-likelihood estimategeneralized negative-binomial distributionsunit-variance function
Related Items (1)
Cites Work
- Natural real exponential families with cubic variance functions
- Compound multinomial likelihood functions are unimodal: Proof of a conjecture of I. J. Good
- Exponential families with variance functions in \(\sqrt {\Delta}P(\sqrt {\Delta})\): Seshadri's class
- The inverse binomial distribution as a statistical model
- Maximum likelihood estimation for the generalized poisson distribution
- A Generalization of the Ballot Problem and its Application in the Theory of Queues
- On the solution of a maximum-likelihood equation of the negative binomial distribution
- SAMPLING THEORY OF THE NEGATIVE BINOMIAL AND LOGARITHMIC SERIES DISTRIBUTIONS
This page was built for publication: Le problème d'Anscombe pour les lois binomiales négatives généralisées