One application of Floquet's theory toLp-Lq estimates for hyperbolic equations with very fast oscillations
DOI<link itemprop=identifier href="https://doi.org/10.1002/(SICI)1099-1476(19990725)22:11<937::AID-MMA28>3.0.CO;2-O" /><937::AID-MMA28>3.0.CO;2-O 10.1002/(SICI)1099-1476(19990725)22:11<937::AID-MMA28>3.0.CO;2-OzbMath0949.35024OpenAlexW2031736431MaRDI QIDQ4265878
Karen Yagdjian, Michael Reissig
Publication date: 1 May 2000
Full work available at URL: https://doi.org/10.1002/(sici)1099-1476(19990725)22:11<937::aid-mma28>3.0.co;2-o
A priori estimates in context of PDEs (35B45) Initial value problems for second-order hyperbolic equations (35L15) Second-order hyperbolic equations (35L10)
Related Items (15)
Cites Work
- Unnamed Item
- An example of a weakly hyperbolic Cauchy problem not well posed in \(C^\infty\)
- \(L^p\)-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I
- On \(L_2-L_{p'}\) estimates for the wave-equation
- A priori estimates for higher order hyperbolic equations
- A priori estimates for the wave equation and some applications
- Global existence for nonlinear wave equations
This page was built for publication: One application of Floquet's theory toLp-Lq estimates for hyperbolic equations with very fast oscillations