METHOD OF ASYMPTOTIC PARTIAL DECOMPOSITION OF DOMAIN
From MaRDI portal
Publication:4270468
DOI10.1142/S021820259800007XzbMath0940.35026OpenAlexW2133303733MaRDI QIDQ4270468
Publication date: 22 November 1999
Published in: Mathematical Models and Methods in Applied Sciences (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s021820259800007x
Multigrid methods; domain decomposition for boundary value problems involving PDEs (65N55) Singular perturbations in context of PDEs (35B25) Theoretical approximation in context of PDEs (35A35)
Related Items (37)
Method of asymptotic partial decomposition with discontinuous junctions ⋮ Time periodic Navier-Stokes equations in a thin tube structure ⋮ Parallel 3D ADI Scheme for Partially Dimension Reduced Heat Conduction Problem ⋮ ASYMPTOTIC ANALYSIS AND PARTIAL ASYMPTOTIC DECOMPOSITION OF DOMAIN FOR STOKES EQUATION IN TUBE STRUCTURE ⋮ F.E.M. implementation for the asymptotic partial decomposition ⋮ Finite volume ADI scheme for hybrid dimension heat conduction problems set in a cross-shaped domain ⋮ Partial decomposition of a domain containing thin tubes for solving the heat equation ⋮ Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure ⋮ Partial decomposition of a domain containing thin tubes for solving the diffusion equation ⋮ ASYMPTOTIC METHODS FOR MICROPOLAR FLUIDS IN A TUBE STRUCTURE ⋮ Asymptotic partial decomposition of domain for spectral problems in rod structures ⋮ Convergence and stability analyses of hierarchic models of dissipative second order evolution equations ⋮ Asymptotic approximations of the solution to a boundary value problem in a thin aneurysm type domain ⋮ Asymptotic approximation for the solution to a semi-linear elliptic problem in a thin aneurysm-type domain ⋮ THE PARTIAL HOMOGENIZATION: CONTINUOUS AND SEMI-DISCRETIZED VERSIONS ⋮ ADI scheme for partially dimension reduced heat conduction models ⋮ A thick‐point approximation of a small body embedded in an elastic medium: justification with an asymptotic analysis ⋮ Error estimate for a 1D-2D finite volume scheme. Comparison with a standard scheme on a 2D non-admissible mesh ⋮ The Nitsche method applied to a class of mixed-dimensional coupling problems ⋮ Numerical approximation of laminar flows over rough walls with sharp asperities. ⋮ Computational networks and systems – homogenization of variational problems on micro-architectured networks and devices ⋮ Domain decomposition and discretization of continuous mathematical models ⋮ Asymptotic expansion of the solution of navier-stokes equation in tube structure and partial asymptotic decomposition of the domain ⋮ ASYMPTOTIC ANALYSIS AND NUMERICAL MODELING OF MASS TRANSPORT IN TUBULAR STRUCTURES ⋮ Reconstruction of the Pressure in the Method of Asymptotic Partial Decomposition for the Flows in Tube Structures ⋮ A posterioriestimate and asymptotic partial domain decomposition ⋮ Asymptotic analysis of a viscous fluid–thin plate interaction: Periodic flow ⋮ Asymptotic partial decomposition for diffusion with sorption in thin structures ⋮ The finite volume implementation of the partial asymptotic domain decomposition ⋮ Finite volume implementation of the method of asymptotic partial domain decomposition for the heat equation on a thin structure ⋮ Asymptotic expansion for the solution to a boundary-value problem in a thin cascade domain with a local joint ⋮ Asymptotic analysis of a thin rigid stratified elastic plate – viscous fluid interaction problem ⋮ Asymptotic expansion of the solution of a linear parabolic boundary-value problem in a thin starlike joint ⋮ Junction of Models of Different Dimension for Flows in Tube Structures by Womersley-Type Interface Conditions ⋮ Error estimate in a finite volume approximation of the partial asymptotic domain decomposition ⋮ Error estimate for a finite volume scheme in a geometrical multi-scale domain ⋮ Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I: The case without boundary-layer-in-time
This page was built for publication: METHOD OF ASYMPTOTIC PARTIAL DECOMPOSITION OF DOMAIN