Finiteness theorems for the shifted Witt and higher Grothendieck-Witt groups of arithmetic schemes
From MaRDI portal
Publication:427763
DOI10.1016/j.jalgebra.2011.10.043zbMath1247.19007OpenAlexW2066153839MaRDI QIDQ427763
Publication date: 18 June 2012
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2011.10.043
motivic cohomologyGrothendieck-Witt groupvarieties over finite fieldsHermitian \(K\)-theoryarithmetic scheme
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hermitian \(K\)-theory, derived equivalences and Karoubi's fundamental theorem
- Cohomological Hasse principle and motivic cohomology for arithmetic schemes
- Motivic cohomology over Dedekind rings
- A graded Gersten-Witt complex for schemes with a dualizing complex and the Chow group
- An exact sequence for \(K^M_*/2\) with applications to quadratic forms
- Chow-Witt groups and Grothendieck-Witt groups of regular schemes
- Cohomologische Invarianten quadratischer Formen
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- Introduction to étale cohomology. Translated by Manfred Kolster
- Galois Cohomology
- Chow groups with coefficients
- Triangular Witt groups. I: The 12-term localization exact sequence
- Motivic cohomology with \(\mathbb Z/2\)-coefficients
- Étale duality for constructible sheaves on arithmetic schemes
- Oriented Chow groups, Hermitian \(K\)-theory and the Gersten conjecture
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Première partie). Rédigé avec la colloboration de J. Dieudonné
- Algebraic \(K\)-theory and quadratic forms. With an appendix by J. Tate
- The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes
- Groupes de Chow-Witt
- Hermitian K-theory of exact categories
- A Hasse principle for two dimensional global fields.
- Gersten's conjecture and the homology of schemes
- NON-INJECTIVITY OF THE MAP FROM THE WITT GROUP OF A VARIETY TO THE WITT GROUP OF ITS FUNCTION FIELD
- Groupe de Chow des cycles orientés et classe d'Euler des fibrés vectoriels
- Hermitian K- theory of the integers
- Triangular Witt groups. II: From usual to derived
- Witt cohomology, Mayer-Vietoris, homotopy invariance and the Gersten conjecture
This page was built for publication: Finiteness theorems for the shifted Witt and higher Grothendieck-Witt groups of arithmetic schemes