A comparison of Lanczos and optimization methods in the partial solution of sparse symmetric eigenproblems
From MaRDI portal
Publication:4285096
DOI10.1002/nme.1620370405zbMath0796.65047OpenAlexW2103270577WikidataQ62925979 ScholiaQ62925979MaRDI QIDQ4285096
Mario Putti, Giuseppe Gambolati
Publication date: 10 October 1994
Published in: International Journal for Numerical Methods in Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/nme.1620370405
convergenceeigenvalueLanczos methodlarge sparse symmetric matricesdeflation-accelerated conjugate gradient method
Computational methods for sparse matrices (65F50) Numerical computation of eigenvalues and eigenvectors of matrices (65F15)
Related Items
CONJUGATE GRADIENT METHODS FOR SOLVING THE SMALLEST EIGENPAIR OF LARGE SYMMETRIC EIGENVALUE PROBLEMS ⋮ A Numerical Study of Eigenvalues of the Hyperbolic Laplacian for Polyhedra with One Cusp
Cites Work